Paper Reading AI Learner

Self-Supervised Adversarial Example Detection by Disentangled Representation

2021-05-08 12:48:18
Zhaoxi Zhang, Leo Yu Zhang, Xufei Zheng, Shengshan Hu, Jinyu Tian, Jiantao Zhou

Abstract

Deep learning models are known to be vulnerable to adversarial examples that are elaborately designed for malicious purposes and are imperceptible to the human perceptual system. Autoencoder, when trained solely over benign examples, has been widely used for (self-supervised) adversarial detection based on the assumption that adversarial examples yield larger reconstruction error. However, because lacking adversarial examples in its training and the too strong generalization ability of autoencoder, this assumption does not always hold true in practice. To alleviate this problem, we explore to detect adversarial examples by disentangled representations of images under the autoencoder structure. By disentangling input images as class features and semantic features, we train an autoencoder, assisted by a discriminator network, over both correctly paired class/semantic features and incorrectly paired class/semantic features to reconstruct benign and counterexamples. This mimics the behavior of adversarial examples and can reduce the unnecessary generalization ability of autoencoder. Compared with the state-of-the-art self-supervised detection methods, our method exhibits better performance in various measurements (i.e., AUC, FPR, TPR) over different datasets (MNIST, Fashion-MNIST and CIFAR-10), different adversarial attack methods (FGSM, BIM, PGD, DeepFool, and CW) and different victim models (8-layer CNN and 16-layer VGG). We compare our method with the state-of-the-art self-supervised detection methods under different adversarial attacks and different victim models (30 attack settings), and it exhibits better performance in various measurements (AUC, FPR, TPR) for most attacks settings. Ideally, AUC is $1$ and our method achieves $0.99+$ on CIFAR-10 for all attacks. Notably, different from other Autoencoder-based detectors, our method can provide resistance to the adaptive adversary.

Abstract (translated)

URL

https://arxiv.org/abs/2105.03689

PDF

https://arxiv.org/pdf/2105.03689.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot