Paper Reading AI Learner

Dirty Pixels: Towards End-to-End Image Processing and Perception

2021-05-08 02:14:41
Steven Diamond, Vincent Sitzmann, Frank Julca-Aguilar, Stephen Boyd, Gordon Wetzstein, Felix Heide

Abstract

Real-world imaging systems acquire measurements that are degraded by noise, optical aberrations, and other imperfections that make image processing for human viewing and higher-level perception tasks challenging. Conventional cameras address this problem by compartmentalizing imaging from high-level task processing. As such, conventional imaging involves processing the RAW sensor measurements in a sequential pipeline of steps, such as demosaicking, denoising, deblurring, tone-mapping and compression. This pipeline is optimized to obtain a visually pleasing image. High-level processing, on the other hand, involves steps such as feature extraction, classification, tracking, and fusion. While this siloed design approach allows for efficient development, it also dictates compartmentalized performance metrics, without knowledge of the higher-level task of the camera system. For example, today's demosaicking and denoising algorithms are designed using perceptual image quality metrics but not with domain-specific tasks such as object detection in mind. We propose an end-to-end differentiable architecture that jointly performs demosaicking, denoising, deblurring, tone-mapping, and classification. The architecture learns processing pipelines whose outputs differ from those of existing ISPs optimized for perceptual quality, preserving fine detail at the cost of increased noise and artifacts. We demonstrate on captured and simulated data that our model substantially improves perception in low light and other challenging conditions, which is imperative for real-world applications. Finally, we found that the proposed model also achieves state-of-the-art accuracy when optimized for image reconstruction in low-light conditions, validating the architecture itself as a potentially useful drop-in network for reconstruction and analysis tasks beyond the applications demonstrated in this work.

Abstract (translated)

URL

https://arxiv.org/abs/1701.06487

PDF

https://arxiv.org/pdf/1701.06487.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot