Paper Reading AI Learner

A Critical Review of Information Bottleneck Theory and its Applications to Deep Learning

2021-05-07 14:16:38
Mohammad Ali Alomrani

Abstract

In the past decade, deep neural networks have seen unparalleled improvements that continue to impact every aspect of today's society. With the development of high performance GPUs and the availability of vast amounts of data, learning capabilities of ML systems have skyrocketed, going from classifying digits in a picture to beating world-champions in games with super-human performance. However, even as ML models continue to achieve new frontiers, their practical success has been hindered by the lack of a deep theoretical understanding of their inner workings. Fortunately, a known information-theoretic method called the information bottleneck theory has emerged as a promising approach to better understand the learning dynamics of neural networks. In principle, IB theory models learning as a trade-off between the compression of the data and the retainment of information. The goal of this survey is to provide a comprehensive review of IB theory covering it's information theoretic roots and the recently proposed applications to understand deep learning models.

Abstract (translated)

URL

https://arxiv.org/abs/2105.04405

PDF

https://arxiv.org/pdf/2105.04405.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot