Paper Reading AI Learner

Learning High-Dimensional Distributions with Latent Neural Fokker-Planck Kernels

2021-05-10 17:42:01
Yufan Zhou, Changyou Chen, Jinhui Xu

Abstract

Learning high-dimensional distributions is an important yet challenging problem in machine learning with applications in various domains. In this paper, we introduce new techniques to formulate the problem as solving Fokker-Planck equation in a lower-dimensional latent space, aiming to mitigate challenges in high-dimensional data space. Our proposed model consists of latent-distribution morphing, a generator and a parameterized Fokker-Planck kernel function. One fascinating property of our model is that it can be trained with arbitrary steps of latent distribution morphing or even without morphing, which makes it flexible and as efficient as Generative Adversarial Networks (GANs). Furthermore, this property also makes our latent-distribution morphing an efficient plug-and-play scheme, thus can be used to improve arbitrary GANs, and more interestingly, can effectively correct failure cases of the GAN models. Extensive experiments illustrate the advantages of our proposed method over existing models.

Abstract (translated)

URL

https://arxiv.org/abs/2105.04538

PDF

https://arxiv.org/pdf/2105.04538.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot