Paper Reading AI Learner

Learning Optimal Decision Making for an Industrial Truck Unloading Robot using Minimal Simulator Runs

2021-03-13 06:22:23
Manash Pratim Das, Anirudh Vemula, Mayank Pathak, Sandip Aine, Maxim Likhachev

Abstract

Consider a truck filled with boxes of varying size and unknown mass and an industrial robot with end-effectors that can unload multiple boxes from any reachable location. In this work, we investigate how would the robot with the help of a simulator, learn to maximize the number of boxes unloaded by each action. Most high-fidelity robotic simulators like ours are time-consuming. Therefore, we investigate the above learning problem with a focus on minimizing the number of simulation runs required. The optimal decision-making problem under this setting can be formulated as a multi-class classification problem. However, to obtain the outcome of any action requires us to run the time-consuming simulator, thereby restricting the amount of training data that can be collected. Thus, we need a data-efficient approach to learn the classifier and generalize it with a minimal amount of data. A high-fidelity physics-based simulator is common in general for complex manipulation tasks involving multi-body interactions. To this end, we train an optimal decision tree as the classifier, and for each branch of the decision tree, we reason about the confidence in the decision using a Probably Approximately Correct (PAC) framework to determine whether more simulator data will help reach a certain confidence level. This provides us with a mechanism to evaluate when simulation can be avoided for certain decisions, and when simulation will improve the decision making. For the truck unloading problem, our experiments show that a significant reduction in simulator runs can be achieved using the proposed method as compared to naively running the simulator to collect data to train equally performing decision trees.

Abstract (translated)

URL

https://arxiv.org/abs/2105.05019

PDF

https://arxiv.org/pdf/2105.05019.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot