Paper Reading AI Learner

Learning to reinforcement learn for Neural Architecture Search

2019-12-02 22:22:35
J. Gomez Robles, J. Vanschoren

Abstract

Reinforcement learning (RL) is a goal-oriented learning solution that has proven to be successful for Neural Architecture Search (NAS) on the CIFAR and ImageNet datasets. However, a limitation of this approach is its high computational cost, making it unfeasible to replay it on other datasets. Through meta-learning, we could bring this cost down by adapting previously learned policies instead of learning them from scratch. In this work, we propose a deep meta-RL algorithm that learns an adaptive policy over a set of environments, making it possible to transfer it to previously unseen tasks. The algorithm was applied to various proof-of-concept environments in the past, but we adapt it to the NAS problem. We empirically investigate the agent's behavior during training when challenged to design chain-structured neural architectures for three datasets with increasing levels of hardness, to later fix the policy and evaluate it on two unseen datasets of different difficulty. Our results show that, under resource constraints, the agent effectively adapts its strategy during training to design better architectures than the ones designed by a standard RL algorithm, and can design good architectures during the evaluation on previously unseen environments. We also provide guidelines on the applicability of our framework in a more complex NAS setting by studying the progress of the agent when challenged to design multi-branch architectures.

Abstract (translated)

URL

https://arxiv.org/abs/1911.03769

PDF

https://arxiv.org/pdf/1911.03769.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot