Paper Reading AI Learner

Accuracy-Privacy Trade-off in Deep Ensemble

2021-05-12 00:58:04
Shahbaz Rezaei, Zubair Shafiq, Xin Liu

Abstract

Deep ensemble learning aims to improve the classification accuracy by training several neural networks and fusing their outputs. It has been widely shown to improve accuracy. At the same time, ensemble learning has also been proposed to mitigate privacy leakage in terms of membership inference (MI), where the goal of an attacker is to infer whether a particular data sample has been used to train a target model. In this paper, we show that these two goals of ensemble learning, namely improving accuracy and privacy, directly conflict with each other. Using a wide range of datasets and model architectures, we empirically demonstrate the trade-off between privacy and accuracy in deep ensemble learning. We find that ensembling can improve either privacy or accuracy, but not both simultaneously -- when ensembling improves the classification accuracy, the effectiveness of the MI attack also increases. We analyze various factors that contribute to such privacy leakage in ensembling such as prediction confidence and agreement between models that constitute the ensemble. Our evaluation of defenses against MI attacks, such as regularization and differential privacy, shows that they can mitigate the effectiveness of the MI attack but simultaneously degrade ensemble accuracy. The source code is available at this https URL.

Abstract (translated)

URL

https://arxiv.org/abs/2105.05381

PDF

https://arxiv.org/pdf/2105.05381.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot