Paper Reading AI Learner

Object-Based Augmentation Improves Quality of Remote SensingSemantic Segmentation

2021-05-12 08:54:55
Svetlana Illarionova, Sergey Nesteruk, Dmitrii Shadrin, Vladimir Ignatiev, Mariia Pukalchik, Ivan Oseledets

Abstract

Today deep convolutional neural networks (CNNs) push the limits for most computer vision problems, define trends, and set state-of-the-art results. In remote sensing tasks such as object detection and semantic segmentation, CNNs reach the SotA performance. However, for precise performance, CNNs require much high-quality training data. Rare objects and the variability of environmental conditions strongly affect prediction stability and accuracy. To overcome these data restrictions, it is common to consider various approaches including data augmentation techniques. This study focuses on the development and testing of object-based augmentation. The practical usefulness of the developed augmentation technique is shown in the remote sensing domain, being one of the most demanded ineffective augmentation techniques. We propose a novel pipeline for georeferenced image augmentation that enables a significant increase in the number of training samples. The presented pipeline is called object-based augmentation (OBA) and exploits objects' segmentation masks to produce new realistic training scenes using target objects and various label-free backgrounds. We test the approach on the buildings segmentation dataset with six different CNN architectures and show that the proposed method benefits for all the tested models. We also show that further augmentation strategy optimization can improve the results. The proposed method leads to the meaningful improvement of U-Net model predictions from 0.78 to 0.83 F1-score.

Abstract (translated)

URL

https://arxiv.org/abs/2105.05516

PDF

https://arxiv.org/pdf/2105.05516.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot