Paper Reading AI Learner

AVA: Adversarial Vignetting Attack against Visual Recognition

2021-05-12 10:18:16
Binyu Tian, Felix Juefei-Xu, Qing Guo, Xiaofei Xie, Xiaohong Li, Yang Liu

Abstract

Vignetting is an inherited imaging phenomenon within almost all optical systems, showing as a radial intensity darkening toward the corners of an image. Since it is a common effect for photography and usually appears as a slight intensity variation, people usually regard it as a part of a photo and would not even want to post-process it. Due to this natural advantage, in this work, we study vignetting from a new viewpoint, i.e., adversarial vignetting attack (AVA), which aims to embed intentionally misleading information into vignetting and produce a natural adversarial example without noise patterns. This example can fool the state-of-the-art deep convolutional neural networks (CNNs) but is imperceptible to humans. To this end, we first propose the radial-isotropic adversarial vignetting attack (RI-AVA) based on the physical model of vignetting, where the physical parameters (e.g., illumination factor and focal length) are tuned through the guidance of target CNN models. To achieve higher transferability across different CNNs, we further propose radial-anisotropic adversarial vignetting attack (RA-AVA) by allowing the effective regions of vignetting to be radial-anisotropic and shape-free. Moreover, we propose the geometry-aware level-set optimization method to solve the adversarial vignetting regions and physical parameters jointly. We validate the proposed methods on three popular datasets, i.e., DEV, CIFAR10, and Tiny ImageNet, by attacking four CNNs, e.g., ResNet50, EfficientNet-B0, DenseNet121, and MobileNet-V2, demonstrating the advantages of our methods over baseline methods on both transferability and image quality.

Abstract (translated)

URL

https://arxiv.org/abs/2105.05558

PDF

https://arxiv.org/pdf/2105.05558.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot