Paper Reading AI Learner

DeepObliviate: A Powerful Charm for Erasing Data Residual Memory in Deep Neural Networks

2021-05-13 12:02:04
Yingzhe He, Guozhu Meng, Kai Chen, Jinwen He, Xingbo Hu

Abstract

Machine unlearning has great significance in guaranteeing model security and protecting user privacy. Additionally, many legal provisions clearly stipulate that users have the right to demand model providers to delete their own data from training set, that is, the right to be forgotten. The naive way of unlearning data is to retrain the model without it from scratch, which becomes extremely time and resource consuming at the modern scale of deep neural networks. Other unlearning approaches by refactoring model or training data struggle to gain a balance between overhead and model usability. In this paper, we propose an approach, dubbed as DeepObliviate, to implement machine unlearning efficiently, without modifying the normal training mode. Our approach improves the original training process by storing intermediate models on the hard disk. Given a data point to unlearn, we first quantify its temporal residual memory left in stored models. The influenced models will be retrained and we decide when to terminate the retraining based on the trend of residual memory on-the-fly. Last, we stitch an unlearned model by combining the retrained models and uninfluenced models. We extensively evaluate our approach on five datasets and deep learning models. Compared to the method of retraining from scratch, our approach can achieve 99.0%, 95.0%, 91.9%, 96.7%, 74.1% accuracy rates and 66.7$\times$, 75.0$\times$, 33.3$\times$, 29.4$\times$, 13.7$\times$ speedups on the MNIST, SVHN, CIFAR-10, Purchase, and ImageNet datasets, respectively. Compared to the state-of-the-art unlearning approach, we improve 5.8% accuracy, 32.5$\times$ prediction speedup, and reach a comparable retrain speedup under identical settings on average on these datasets. Additionally, DeepObliviate can also pass the backdoor-based unlearning verification.

Abstract (translated)

URL

https://arxiv.org/abs/2105.06209

PDF

https://arxiv.org/pdf/2105.06209.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot