Paper Reading AI Learner

DONet: Dual-Octave Network for Fast MR Image Reconstruction

2021-05-12 21:41:02
Chun-Mei Feng, Zhanyuan Yang, Huazhu Fu, Yong Xu, Jian Yang, Ling Shao

Abstract

Magnetic resonance (MR) image acquisition is an inherently prolonged process, whose acceleration has long been the subject of research. This is commonly achieved by obtaining multiple undersampled images, simultaneously, through parallel imaging. In this paper, we propose the Dual-Octave Network (DONet), which is capable of learning multi-scale spatial-frequency features from both the real and imaginary components of MR data, for fast parallel MR image reconstruction. More specifically, our DONet consists of a series of Dual-Octave convolutions (Dual-OctConv), which are connected in a dense manner for better reuse of features. In each Dual-OctConv, the input feature maps and convolutional kernels are first split into two components (ie, real and imaginary), and then divided into four groups according to their spatial frequencies. Then, our Dual-OctConv conducts intra-group information updating and inter-group information exchange to aggregate the contextual information across different groups. Our framework provides three appealing benefits: (i) It encourages information interaction and fusion between the real and imaginary components at various spatial frequencies to achieve richer representational capacity. (ii) The dense connections between the real and imaginary groups in each Dual-OctConv make the propagation of features more efficient by feature reuse. (iii) DONet enlarges the receptive field by learning multiple spatial-frequency features of both the real and imaginary components. Extensive experiments on two popular datasets (ie, clinical knee and fastMRI), under different undersampling patterns and acceleration factors, demonstrate the superiority of our model in accelerated parallel MR image reconstruction.

Abstract (translated)

URL

https://arxiv.org/abs/2105.05980

PDF

https://arxiv.org/pdf/2105.05980.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot