Paper Reading AI Learner

A one-armed CNN for exoplanet detection from light curves

2021-05-12 14:00:22
Koko Visser, Bas Bosma, Eric Postma

Abstract

We propose Genesis, a one-armed simplified Convolutional Neural Network (CNN)for exoplanet detection, and compare it to the more complex, two-armed CNN called Astronet. Furthermore, we examine how Monte Carlo cross-validation affects the estimation of the exoplanet detection performance. Finally, we increase the input resolution twofold to assess its effect on performance. The experiments reveal that (i)the reduced complexity of Genesis, i.e., a more than 95% reduction in the number of free parameters, incurs a small performance cost of about 0.5% compared to Astronet, (ii) Monte Carlo cross-validation provides a more realistic performance estimate that is almost 0.7% below the original estimate, and (iii) the twofold increase in input resolution decreases the average performance by about 0.5%. We conclude by arguing that further exploration of shallower CNN architectures may be beneficial in order to improve the generalizability of CNN-based exoplanet detection across surveys.

Abstract (translated)

URL

https://arxiv.org/abs/2105.06292

PDF

https://arxiv.org/pdf/2105.06292.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot