Paper Reading AI Learner

Internet of Things Based Video Analytics: a use case of Smart Doorbell

2021-05-13 18:48:48
Shailesh Arya

Abstract

The vision of the internet of things (IoT) is a reality now. IoT devices are getting cheaper, smaller. They are becoming more and more computationally and energy-efficient. The global market of IoT-based video analytics has seen significant growth in recent years and it is expected to be a growing market segment. For any IoT-based video analytics application, few key points required, such as cost-effectiveness, widespread use, flexible design, accurate scene detection, reusability of the framework. Video-based smart doorbell system is one such application domain for video analytics where many commercial offerings are available in the consumer market. However, such existing offerings are costly, monolithic, and proprietary. Also, there will be a trade-off between accuracy and portability. To address the foreseen problems, I'm proposing a distributed framework for video analytics with a use case of a smart doorbell system. The proposed framework uses AWS cloud services as a base platform and to meet the price affordability constraint, the system was implemented on affordable Raspberry Pi. The smart doorbell will be able to recognize the known/unknown person with at most accuracy. The smart doorbell system is also having additional detection functionalities such as harmful weapon detection, noteworthy vehicle detection, animal/pet detection. An iOS application is specifically developed for this implementation which can receive the notification from the smart doorbell in real-time. Finally, the paper also mentions the classical approaches for video analytics, their feasibility in implementing with this use-case, and comparative analysis in terms of accuracy and time required to detect an object in the frame is carried out. Results conclude that AWS cloud-based approach is worthy for this smart doorbell use case.

Abstract (translated)

URL

https://arxiv.org/abs/2105.06508

PDF

https://arxiv.org/pdf/2105.06508.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot