Paper Reading AI Learner

Predicting speech intelligibility from EEG using a dilated convolutional network

2021-05-14 14:12:52
Bernd Accou, Mohammad Jalilpour Monesi, Hugo Van hamme, Tom Francart

Abstract

Objective: Currently, only behavioral speech understanding tests are available, which require active participation of the person. As this is infeasible for certain populations, an objective measure of speech intelligibility is required. Recently, brain imaging data has been used to establish a relationship between stimulus and brain response. Linear models have been successfully linked to speech intelligibility but require per-subject training. We present a deep-learning-based model incorporating dilated convolutions that can be used to predict speech intelligibility without subject-specific (re)training. Methods: We evaluated the performance of the model as a function of input segment length, EEG frequency band and receptive field size while comparing it to a baseline model. Next, we evaluated performance on held-out data and finetuning. Finally, we established a link between the accuracy of our model and the state-of-the-art behavioral MATRIX test. Results: The model significantly outperformed the baseline for every input segment length (p$\leq10^{-9}$), for all EEG frequency bands except the theta band (p$\leq0.001$) and for receptive field sizes larger than 125~ms (p$\leq0.05$). Additionally, finetuning significantly increased the accuracy (p$\leq0.05$) on a held-out dataset. Finally, a significant correlation (r=0.59, p=0.0154) was found between the speech reception threshold estimated using the behavioral MATRIX test and our objective method. Conclusion: Our proposed dilated convolutional model can be used as a proxy for speech intelligibility. Significance: Our method is the first to predict the speech reception threshold from EEG for unseen subjects, contributing to objective measures of speech intelligibility.

Abstract (translated)

URL

https://arxiv.org/abs/2105.06844

PDF

https://arxiv.org/pdf/2105.06844.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot