Paper Reading AI Learner

Rethinking the Design Principles of Robust Vision Transformer

2021-05-17 15:04:15
Xiaofeng Mao, Gege Qi, Yuefeng Chen, Xiaodan Li, Shaokai Ye, Yuan He, Hui Xue

Abstract

Recent advances on Vision Transformers (ViT) have shown that self-attention-based networks, which take advantage of long-range dependencies modeling ability, surpassed traditional convolution neural networks (CNNs) in most vision tasks. To further expand the applicability for computer vision, many improved variants are proposed to re-design the Transformer architecture by considering the superiority of CNNs, i.e., locality, translation invariance, for better performance. However, these methods only consider the standard accuracy or computation cost of the model. In this paper, we rethink the design principles of ViTs based on the robustness. We found some design components greatly harm the robustness and generalization ability of ViTs while some others are beneficial. By combining the robust design components, we propose Robust Vision Transformer (RVT). RVT is a new vision transformer, which has superior performance and strong robustness. We further propose two new plug-and-play techniques called position-aware attention rescaling and patch-wise augmentation to train our RVT. The experimental results on ImageNet and six robustness benchmarks show the advanced robustness and generalization ability of RVT compared with previous Transformers and state-of-the-art CNNs. Our RVT-S* also achieves Top-1 rank on multiple robustness leaderboards including ImageNet-C and ImageNet-Sketch. The code will be available at this https URL.

Abstract (translated)

URL

https://arxiv.org/abs/2105.07926

PDF

https://arxiv.org/pdf/2105.07926.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot