Paper Reading AI Learner

Adaptive ABAC Policy Learning: A Reinforcement Learning Approach

2021-05-18 15:18:02
Leila Karimi, Mai Abdelhakim, James Joshi

Abstract

With rapid advances in computing systems, there is an increasing demand for more effective and efficient access control (AC) approaches. Recently, Attribute Based Access Control (ABAC) approaches have been shown to be promising in fulfilling the AC needs of such emerging complex computing environments. An ABAC model grants access to a requester based on attributes of entities in a system and an authorization policy; however, its generality and flexibility come with a higher cost. Further, increasing complexities of organizational systems and the need for federated accesses to their resources make the task of AC enforcement and management much more challenging. In this paper, we propose an adaptive ABAC policy learning approach to automate the authorization management task. We model ABAC policy learning as a reinforcement learning problem. In particular, we propose a contextual bandit system, in which an authorization engine adapts an ABAC model through a feedback control loop; it relies on interacting with users/administrators of the system to receive their feedback that assists the model in making authorization decisions. We propose four methods for initializing the learning model and a planning approach based on attribute value hierarchy to accelerate the learning process. We focus on developing an adaptive ABAC policy learning model for a home IoT environment as a running example. We evaluate our proposed approach over real and synthetic data. We consider both complete and sparse datasets in our evaluations. Our experimental results show that the proposed approach achieves performance that is comparable to ones based on supervised learning in many scenarios and even outperforms them in several situations.

Abstract (translated)

URL

https://arxiv.org/abs/2105.08587

PDF

https://arxiv.org/pdf/2105.08587.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot