Paper Reading AI Learner

Multi-view Contrastive Coding of Remote Sensing Images at Pixel-level

2021-05-18 13:28:46
Yuxing Chen

Abstract

Our planet is viewed by satellites through multiple sensors (e.g., multi-spectral, Lidar and SAR) and at different times. Multi-view observations bring us complementary information than the single one. Alternatively, there are common features shared between different views, such as geometry and semantics. Recently, contrastive learning methods have been proposed for the alignment of multi-view remote sensing images and improving the feature representation of single sensor images by modeling view-invariant factors. However, these methods are based on the pretraining of the predefined tasks or just focus on image-level classification. Moreover, these methods lack research on uncertainty estimation. In this work, a pixel-wise contrastive approach based on an unlabeled multi-view setting is proposed to overcome this limitation. This is achieved by the use of contrastive loss in the feature alignment and uniformity between multi-view images. In this approach, a pseudo-Siamese ResUnet is trained to learn a representation that aims to align features from the shifted positive pairs and uniform the induced distribution of the features on the hypersphere. The learned features of multi-view remote sensing images are evaluated on a liner protocol evaluation and an unsupervised change detection task. We analyze key properties of the approach that make it work, finding that the requirement of shift equivariance ensured the success of the proposed approach and the uncertainty estimation of representations leads to performance improvements. Moreover, the performance of multi-view contrastive learning is affected by the choice of different sensors. Results demonstrate both improvements in efficiency and accuracy over the state-of-the-art multi-view contrastive methods.

Abstract (translated)

URL

https://arxiv.org/abs/2105.08501

PDF

https://arxiv.org/pdf/2105.08501.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot