Paper Reading AI Learner

Calibration and Uncertainty Quantification of Bayesian Convolutional Neural Networks for Geophysical Applications

2021-05-25 17:54:23
Lukas Mosser, Ehsan Zabihi Naeini

Abstract

Deep neural networks offer numerous potential applications across geoscience, for example, one could argue that they are the state-of-the-art method for predicting faults in seismic datasets. In quantitative reservoir characterization workflows, it is common to incorporate the uncertainty of predictions thus such subsurface models should provide calibrated probabilities and the associated uncertainties in their predictions. It has been shown that popular Deep Learning-based models are often miscalibrated, and due to their deterministic nature, provide no means to interpret the uncertainty of their predictions. We compare three different approaches to obtaining probabilistic models based on convolutional neural networks in a Bayesian formalism, namely Deep Ensembles, Concrete Dropout, and Stochastic Weight Averaging-Gaussian (SWAG). These methods are consistently applied to fault detection case studies where Deep Ensembles use independently trained models to provide fault probabilities, Concrete Dropout represents an extension to the popular Dropout technique to approximate Bayesian neural networks, and finally, we apply SWAG, a recent method that is based on the Bayesian inference equivalence of mini-batch Stochastic Gradient Descent. We provide quantitative results in terms of model calibration and uncertainty representation, as well as qualitative results on synthetic and real seismic datasets. Our results show that the approximate Bayesian methods, Concrete Dropout and SWAG, both provide well-calibrated predictions and uncertainty attributes at a lower computational cost when compared to the baseline Deep Ensemble approach. The resulting uncertainties also offer a possibility to further improve the model performance as well as enhancing the interpretability of the models.

Abstract (translated)

URL

https://arxiv.org/abs/2105.12115

PDF

https://arxiv.org/pdf/2105.12115.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot