Paper Reading AI Learner

Joint Optimization of Tokenization and Downstream Model

2021-05-26 09:05:10
Tatsuya Hiraoka, Sho Takase, Kei Uchiumi, Atsushi Keyaki, Naoaki Okazaki

Abstract

Since traditional tokenizers are isolated from a downstream task and model, they cannot output an appropriate tokenization depending on the task and model, although recent studies imply that the appropriate tokenization improves the performance. In this paper, we propose a novel method to find an appropriate tokenization to a given downstream model by jointly optimizing a tokenizer and the model. The proposed method has no restriction except for using loss values computed by the downstream model to train the tokenizer, and thus, we can apply the proposed method to any NLP task. Moreover, the proposed method can be used to explore the appropriate tokenization for an already trained model as post-processing. Therefore, the proposed method is applicable to various situations. We evaluated whether our method contributes to improving performance on text classification in three languages and machine translation in eight language pairs. Experimental results show that our proposed method improves the performance by determining appropriate tokenizations.

Abstract (translated)

URL

https://arxiv.org/abs/2105.12410

PDF

https://arxiv.org/pdf/2105.12410.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot