Paper Reading AI Learner

XOmiVAE: an interpretable deep learning model for cancer classification using high-dimensional omics data

2021-05-26 19:55:12
Eloise Withnell, Xiaoyu Zhang, Kai Sun, Yike Guo

Abstract

Deep learning based approaches have proven promising to model omics data. However, one of the current limitations compared to statistical and traditional machine learning approaches is the lack of explainability, which not only reduces the reliability, but limits the potential for acquiring novel knowledge from unpicking the "black-box" models. Here we present XOmiVAE, a novel interpretable deep learning model for cancer classification using high-dimensional omics data. XOmiVAE is able to obtain contribution values of each gene and latent dimension for a specific prediction, and the correlation between genes and the latent dimensions. It is also revealed that XOmiVAE can explain both the supervised classification and the unsupervised clustering results from the deep learning network. To the best of our knowledge, XOmiVAE is one of the first activated-based deep learning interpretation method to explain novel clusters generated by variational autoencoders. The results generated by XOmiVAE were validated by both the biomedical knowledge and the performance of downstream tasks. XOmiVAE explanations of deep learning based cancer classification and clustering aligned with current domain knowledge including biological annotation and literature, which shows great potential for novel biomedical knowledge discovery from deep learning models. The top XOmiVAE selected genes and dimensions shown significant influence to the performance of cancer classification. Additionally, we offer important steps to consider when interpreting deep learning models for tumour classification. For instance, we demonstrate the importance of choosing background samples that makes biological sense and the limitations of connection weight based methods to explain latent dimensions.

Abstract (translated)

URL

https://arxiv.org/abs/2105.12807

PDF

https://arxiv.org/pdf/2105.12807.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot