Paper Reading AI Learner

Estimating Fund-Raising Performance for Start-up Projects from a Market Graph Perspective

2021-05-27 02:39:30
Likang Wu, Zhi Li, Hongke Zhao, Qi Liu, Enhong Chen

Abstract

In the online innovation market, the fund-raising performance of the start-up project is a concerning issue for creators, investors and platforms. Unfortunately, existing studies always focus on modeling the fund-raising process after the publishment of a project but the predicting of a project attraction in the market before setting up is largely unexploited. Usually, this prediction is always with great challenges to making a comprehensive understanding of both the start-up project and market environment. To that end, in this paper, we present a focused study on this important problem from a market graph perspective. Specifically, we propose a Graph-based Market Environment (GME) model for predicting the fund-raising performance of the unpublished project by exploiting the market environment. In addition, we discriminatively model the project competitiveness and market preferences by designing two graph-based neural network architectures and incorporating them into a joint optimization stage. Furthermore, to explore the information propagation problem with dynamic environment in a large-scale market graph, we extend the GME model with parallelizing competitiveness quantification and hierarchical propagation algorithm. Finally, we conduct extensive experiments on real-world data. The experimental results clearly demonstrate the effectiveness of our proposed model.

Abstract (translated)

URL

https://arxiv.org/abs/2105.12918

PDF

https://arxiv.org/pdf/2105.12918.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot