Paper Reading AI Learner

Finding top performers through email patterns analysis

2021-05-27 09:45:02
Q. Wen, P. A. Gloor, A. Fronzetti Colladon, P. Tickoo, T. Joshi

Abstract

In the information economy, individuals' work performance is closely associated with their digital communication strategies. This study combines social network and semantic analysis to develop a method to identify top performers based on email communication. By reviewing existing literature, we identified the indicators that quantify email communication into measurable dimensions. To empirically examine the predictive power of the proposed indicators, we collected 2 million email archive of 578 executives in an international service company. Panel regression was employed to derive interpretable association between email indicators and top performance. The results suggest that top performers tend to assume central network positions and have high responsiveness to emails. In email contents, top performers use more positive and complex language, with low emotionality, but rich in influential words that are probably reused by co-workers. To better explore the predictive power of the email indicators, we employed AdaBoost machine learning models, which achieved 83.56% accuracy in identifying top performers. With cluster analysis, we further find three categories of top performers, "networkers" with central network positions, "influencers" with influential ideas and "positivists" with positive sentiments. The findings suggest that top performers have distinctive email communication patterns, laying the foundation for grounding email communication competence in theory. The proposed email analysis method also provides a tool to evaluate the different types of individual communication styles.

Abstract (translated)

URL

https://arxiv.org/abs/2105.13025

PDF

https://arxiv.org/pdf/2105.13025.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot