Paper Reading AI Learner

Exploitation vs Caution: Risk-sensitive Policies for Offline Learning

2021-05-27 20:12:20
Giorgio Angelotti, Nicolas Drougard, Caroline Ponzoni Carvalho Chanel

Abstract

Offline model learning for planning is a branch of machine learning that trains agents to perform actions in an unknown environment using a fixed batch of previously collected experiences. The limited size of the data set hinders the estimate of the Value function of the relative Markov Decision Process (MDP), bounding the performance of the obtained policy in the real world. In this context, recent works showed that planning with a discount factor lower than the one used during the evaluation phase yields more performing policies. However, the optimal discount factor is finally chosen by cross-validation. Our aim is to show that looking for a sub-optimal solution of a Bayesian MDP might lead to better performances with respect to the current baselines that work in the offline setting. Hence, we propose Exploitation vs Caution (EvC), an algorithm that automatically selects the policy that solves a Risk-sensitive Bayesian MDP in a set of policies obtained by solving several MDPs characterized by different discount factors and transition dynamics. On one hand, the Bayesian formalism elegantly includes model uncertainty and on another hand the introduction of a risk-sensitive utility function guarantees robustness. We evaluated the proposed approach in different discrete simple environments offering a fair variety of MDP classes. We also compared the obtained results with state-of-the-art offline learning for planning baselines such as MOPO and MOReL. In the tested scenarios EvC is more robust than the said approaches suggesting that sub-optimally solving an Offline Risk-sensitive Bayesian MDP (ORBMDP) could define a sound framework for planning under model uncertainty.

Abstract (translated)

URL

https://arxiv.org/abs/2105.13431

PDF

https://arxiv.org/pdf/2105.13431.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot