Paper Reading AI Learner

MixDefense: A Defense-in-Depth Framework for Adversarial Example Detection Based on Statistical and Semantic Analysis

2021-04-20 15:57:07
Yang Yijun, Gao Ruiyuan, Li Yu, Lai Qiuxia, Xu Qiang

Abstract

Machine learning with deep neural networks (DNNs) has become one of the foundation techniques in many safety-critical systems, such as autonomous vehicles and medical diagnosis systems. DNN-based systems, however, are known to be vulnerable to adversarial examples (AEs) that are maliciously perturbed variants of legitimate inputs. While there has been a vast body of research to defend against AE attacks in the literature, the performances of existing defense techniques are still far from satisfactory, especially for adaptive attacks, wherein attackers are knowledgeable about the defense mechanisms and craft AEs accordingly. In this work, we propose a multilayer defense-in-depth framework for AE detection, namely MixDefense. For the first layer, we focus on those AEs with large perturbations. We propose to leverage the `noise' features extracted from the inputs to discover the statistical difference between natural images and tampered ones for AE detection. For AEs with small perturbations, the inference result of such inputs would largely deviate from their semantic information. Consequently, we propose a novel learning-based solution to model such contradictions for AE detection. Both layers are resilient to adaptive attacks because there do not exist gradient propagation paths for AE generation. Experimental results with various AE attack methods on image classification datasets show that the proposed MixDefense solution outperforms the existing AE detection techniques by a considerable margin.

Abstract (translated)

URL

https://arxiv.org/abs/2104.10076

PDF

https://arxiv.org/pdf/2104.10076.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot