Paper Reading AI Learner

Unsupervised Domain Adaption of Object Detectors: A Survey

2021-05-27 23:34:06
Poojan Oza, Vishwanath A. Sindagi, Vibashan VS, Vishal M. Patel

Abstract

Recent advances in deep learning have led to the development of accurate and efficient models for various computer vision applications such as object classification, semantic segmentation, and object detection. However, learning highly accurate models relies on the availability of datasets with a large number of annotated images. Due to this, model performance drops drastically when evaluated on label-scarce datasets having visually distinct images. This issue is commonly referred to as covariate shift or dataset bias. Domain adaptation attempts to address this problem by leveraging domain shift characteristics from labeled data in a related domain when learning a classifier for label-scarce target dataset. There are a plethora of works to adapt object classification and semantic segmentation models to label-scarce target dataset through unsupervised domain adaptation. Considering that object detection is a fundamental task in computer vision, many recent works have recently focused on addressing the domain adaptation issue for object detection as well. In this paper, we provide a brief introduction to the domain adaptation problem for object detection and present an overview of various methods proposed to date for addressing this problem. Furthermore, we highlight strategies proposed for this problem and the associated shortcomings. Subsequently, we identify multiple aspects of the unsupervised domain adaptive detection problem that are most promising for future research in the area. We believe that this survey shall be valuable to the pattern recognition experts working in the fields of computer vision, biometrics, medical imaging, and autonomous navigation by introducing them to the problem, getting them familiar with the current status of the progress, and providing them with promising direction for future research.

Abstract (translated)

URL

https://arxiv.org/abs/2105.13502

PDF

https://arxiv.org/pdf/2105.13502.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot