Paper Reading AI Learner

Early Exiting with Ensemble Internal Classifiers

2021-05-28 12:54:11
Tianxiang Sun, Yunhua Zhou, Xiangyang Liu, Xinyu Zhang, Hao Jiang, Zhao Cao, Xuanjing Huang, Xipeng Qiu

Abstract

As a simple technique to accelerate inference of large-scale pre-trained models, early exiting has gained much attention in the NLP community. It allows samples to exit early at internal classifiers without passing through the entire model. Most existing work usually trains the internal classifiers independently and employs an exiting strategy to decide whether or not to exit based on the confidence of the current internal classifier. However, none of these works takes full advantage of the fact that the internal classifiers are trained to solve the same task therefore can be used to construct an ensemble. In this paper, we show that a novel objective function for the training of the ensemble internal classifiers can be naturally induced from the perspective of ensemble learning and information theory. The proposed training objective consists of two terms: one for accuracy and the other for the diversity of the internal classifiers. In contrast, the objective used in prior work is exactly the accuracy term of our training objective therefore only optimizes the accuracy but not diversity. Further, we propose a simple voting-based strategy that considers predictions of all the past internal classifiers to infer the correct label and decide whether to exit. Experimental results on various NLP tasks show that our proposed objective function and voting-based strategy can achieve better accuracy-speed trade-offs.

Abstract (translated)

URL

https://arxiv.org/abs/2105.13792

PDF

https://arxiv.org/pdf/2105.13792.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot