Paper Reading AI Learner

A Study On the Effects of Pre-processing On Spatio-temporal Action Recognition Using Spiking Neural Networks Trained with STDP

2021-05-31 07:07:48
El-Assal Mireille, Tirilly Pierre, Bilasco Ioan Marius

Abstract

There has been an increasing interest in spiking neural networks in recent years. SNNs are seen as hypothetical solutions for the bottlenecks of ANNs in pattern recognition, such as energy efficiency. But current methods such as ANN-to-SNN conversion and back-propagation do not take full advantage of these networks, and unsupervised methods have not yet reached a success comparable to advanced artificial neural networks. It is important to study the behavior of SNNs trained with unsupervised learning methods such as spike-timing dependent plasticity (STDP) on video classification tasks, including mechanisms to model motion information using spikes, as this information is critical for video understanding. This paper presents multiple methods of transposing temporal information into a static format, and then transforming the visual information into spikes using latency coding. These methods are paired with two types of temporal fusion known as early and late fusion, and are used to help the spiking neural network in capturing the spatio-temporal features from videos. In this paper, we rely on the network architecture of a convolutional spiking neural network trained with STDP, and we test the performance of this network when challenged with action recognition tasks. Understanding how a spiking neural network responds to different methods of movement extraction and representation can help reduce the performance gap between SNNs and ANNs. In this paper we show the effect of the similarity in the shape and speed of certain actions on action recognition with spiking neural networks, we also highlight the effectiveness of some methods compared to others.

Abstract (translated)

URL

https://arxiv.org/abs/2105.14740

PDF

https://arxiv.org/pdf/2105.14740.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot