Paper Reading AI Learner

Long-term Person Re-identification: A Benchmark

2021-05-31 03:35:00
Peng Xu, Xiatian Zhu

Abstract

Existing person re-identification (Re-ID) works mostly consider a short-term search problem assuming unchanged clothes and personal appearance. However, in realworld we often dress ourselves differently across locations, time, dates, seasons, weather, and events. As a result, the existing methods are unsuitable for long-term person Re-ID with clothes change involved. Whilst there are several recent longterm Re-ID attempts, a large realistic dataset with clothes change is lacking and indispensable for enabling extensive study as already experienced in short-term Re-ID setting. In this work, we contribute timely a large, realistic long-term person re-identification benchmark. It consists of 171K bounding boxes from 1.1K person identities, collected and constructed over a course of 12 months. Unique characteristics of this dataset include: (1) Natural/native personal appearance (e.g., clothes and hair style) variations: The degrees of clothes-change and dressing styles all are highly diverse, with the reappearing gap in time ranging from minutes, hours, and days to weeks, months, seasons, and years. (2) Diverse walks of life: Persons across a wide range of ages and professions appear in different weather conditions (e.g., sunny, cloudy, windy, rainy, snowy, extremely cold) and events (e.g., working, leisure, daily activities). (3) Rich camera setups: The raw videos were recorded by 17 outdoor security cameras with various resolutions operating in a real-world surveillance system for a wide and dense block. (4) Largest scale: It covers the largest number of (17) cameras, (1082) identities, and (171K) bounding boxes, as compared to alternative datasets.

Abstract (translated)

URL

https://arxiv.org/abs/2105.14685

PDF

https://arxiv.org/pdf/2105.14685.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot