Paper Reading AI Learner

Hardness Sampling for Self-Training Based Transductive Zero-Shot Learning

2021-06-01 06:55:19
Liu Bo, Qiulei Dong, Zhanyi Hu

Abstract

Transductive zero-shot learning (T-ZSL) which could alleviate the domain shift problem in existing ZSL works, has received much attention recently. However, an open problem in T-ZSL: how to effectively make use of unseen-class samples for training, still remains. Addressing this problem, we first empirically analyze the roles of unseen-class samples with different degrees of hardness in the training process based on the uneven prediction phenomenon found in many ZSL methods, resulting in three observations. Then, we propose two hardness sampling approaches for selecting a subset of diverse and hard samples from a given unseen-class dataset according to these observations. The first one identifies the samples based on the class-level frequency of the model predictions while the second enhances the former by normalizing the class frequency via an approximate class prior estimated by an explored prior estimation algorithm. Finally, we design a new Self-Training framework with Hardness Sampling for T-ZSL, called STHS, where an arbitrary inductive ZSL method could be seamlessly embedded and it is iteratively trained with unseen-class samples selected by the hardness sampling approach. We introduce two typical ZSL methods into the STHS framework and extensive experiments demonstrate that the derived T-ZSL methods outperform many state-of-the-art methods on three public benchmarks. Besides, we note that the unseen-class dataset is separately used for training in some existing transductive generalized ZSL (T-GZSL) methods, which is not strict for a GZSL task. Hence, we suggest a more strict T-GZSL data setting and establish a competitive baseline on this setting by introducing the proposed STHS framework to T-GZSL.

Abstract (translated)

URL

https://arxiv.org/abs/2106.00264

PDF

https://arxiv.org/pdf/2106.00264.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot