Paper Reading AI Learner

Search Methods for Sufficient, Socially-Aligned Feature Importance Explanations with In-Distribution Counterfactuals

2021-06-01 20:36:48
Peter Hase, Harry Xie, Mohit Bansal

Abstract

Feature importance (FI) estimates are a popular form of explanation, and they are commonly created and evaluated by computing the change in model confidence caused by removing certain input features at test time. For example, in the standard Sufficiency metric, only the top-k most important tokens are kept. In this paper, we study several under-explored dimensions of FI-based explanations, providing conceptual and empirical improvements for this form of explanation. First, we advance a new argument for why it can be problematic to remove features from an input when creating or evaluating explanations: the fact that these counterfactual inputs are out-of-distribution (OOD) to models implies that the resulting explanations are socially misaligned. The crux of the problem is that the model prior and random weight initialization influence the explanations (and explanation metrics) in unintended ways. To resolve this issue, we propose a simple alteration to the model training process, which results in more socially aligned explanations and metrics. Second, we compare among five approaches for removing features from model inputs. We find that some methods produce more OOD counterfactuals than others, and we make recommendations for selecting a feature-replacement function. Finally, we introduce four search-based methods for identifying FI explanations and compare them to strong baselines, including LIME, Integrated Gradients, and random search. On experiments with six diverse text classification datasets, we find that the only method that consistently outperforms random search is a Parallel Local Search that we introduce. Improvements over the second-best method are as large as 5.4 points for Sufficiency and 17 points for Comprehensiveness. All supporting code is publicly available at this https URL.

Abstract (translated)

URL

https://arxiv.org/abs/2106.00786

PDF

https://arxiv.org/pdf/2106.00786.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot