Paper Reading AI Learner

Addressing Inquiries about History: An Efficient and Practical Framework for Evaluating Open-domain Chatbot Consistency

2021-06-04 03:04:13
Zekang Li, Jinchao Zhang, Zhengcong Fei, Yang Feng, Jie Zhou

Abstract

A good open-domain chatbot should avoid presenting contradictory responses about facts or opinions in a conversational session, known as its consistency capacity. However, evaluating the consistency capacity of a chatbot is still challenging. Employing human judges to interact with chatbots on purpose to check their capacities is costly and low-efficient, and difficult to get rid of subjective bias. In this paper, we propose the Addressing Inquiries about History (AIH), an efficient and practical framework for the consistency evaluation. At the conversation stage, AIH attempts to address appropriate inquiries about the dialogue history to induce the chatbot to redeclare the historical facts or opinions. We carry out the conversation between chatbots, which is more efficient than the human-bot interaction and can also alleviate the subjective bias. In this way, we manage to rapidly obtain a dialog session that contains responses with high contradiction possibilities. At the contradiction recognition stage, we can either employ human judges or a natural language inference (NLI) model to recognize whether the answers to the inquiries are contradictory with history. Finally, we are able to rank chatbots according to the contradiction statistics. Experiments on open-domain chatbots show that our approach can efficiently and reliably assess the consistency capacity of chatbots and achieve a high ranking correlation with the human evaluation. We release the framework and hope to help improve the consistency capacity of chatbots. \footnote{\url{this https URL}}

Abstract (translated)

URL

https://arxiv.org/abs/2106.02228

PDF

https://arxiv.org/pdf/2106.02228.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot