Paper Reading AI Learner

Using Social Media Background to Improve Cold-start Recommendation Deep Models

2021-06-04 04:46:29
Yihong Zhang, Takuya Maekawa, Takahiro Hara

Abstract

In recommender systems, a cold-start problem occurs when there is no past interaction record associated with the user or item. Typical solutions to the cold-start problem make use of contextual information, such as user demographic attributes or product descriptions. A group of works have shown that social media background can help predicting temporal phenomenons such as product sales and stock price movements. In this work, our goal is to investigate whether social media background can be used as extra contextual information to improve recommendation models. Based on an existing deep neural network model, we proposed a method to represent temporal social media background as embeddings and fuse them as an extra component in the model. We conduct experimental evaluations on a real-world e-commerce dataset and a Twitter dataset. The results show that our method of fusing social media background with the existing model does generally improve recommendation performance. In some cases the recommendation accuracy measured by hit-rate@K doubles after fusing with social media background. Our findings can be beneficial for future recommender system designs that consider complex temporal information representing social interests.

Abstract (translated)

URL

https://arxiv.org/abs/2106.02256

PDF

https://arxiv.org/pdf/2106.02256.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot