Paper Reading AI Learner

CDN-MEDAL: Two-stage Density and Difference Approximation Framework for Motion Analysis

2021-06-07 16:39:42
Synh Viet-Uyen Ha, Cuong Tien Nguyen, Hung Ngoc Phan, Nhat Minh Chung, Phuong Hoai Ha

Abstract

Background modeling is a promising research area in video analysis with a variety of video surveillance applications. Recent years have witnessed the proliferation of deep neural networks via effective learning-based approaches in motion analysis. However, these techniques only provide a limited description of the observed scenes' insufficient properties where a single-valued mapping is learned to approximate the temporal conditional averages of the target background. On the other hand, statistical learning in imagery domains has become one of the most prevalent approaches with high adaptation to dynamic context transformation, notably Gaussian Mixture Models, combined with a foreground extraction step. In this work, we propose a novel, two-stage method of change detection with two convolutional neural networks. The first architecture is grounded on the unsupervised Gaussian mixtures statistical learning to describe the scenes' salient features. The second one implements a light-weight pipeline of foreground detection. Our two-stage framework contains approximately 3.5K parameters in total but still maintains rapid convergence to intricate motion patterns. Our experiments on publicly available datasets show that our proposed networks are not only capable of generalizing regions of moving objects in unseen cases with promising results but also are competitive in performance efficiency and effectiveness regarding foreground segmentation.

Abstract (translated)

URL

https://arxiv.org/abs/2106.03776

PDF

https://arxiv.org/pdf/2106.03776.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot