Paper Reading AI Learner

Alpha Matte Generation from Single Input for Portrait Matting

2021-06-06 18:53:42
Dogucan Yaman, Hazım Kemal Ekenel, Alexander Waibel


Portrait matting is an important research problem with a wide range of applications, such as video conference app, image/video editing, and post-production. The goal is to predict an alpha matte that identifies the effect of each pixel on the foreground subject. Traditional approaches and most of the existing works utilized an additional input, e.g., trimap, background image, to predict alpha matte. However, providing additional input is not always practical. Besides, models are too sensitive to these additional inputs. In this paper, we introduce an additional input-free approach to perform portrait matting using Generative Adversarial Nets (GANs). We divide the main task into two subtasks. For this, we propose a segmentation network for the person segmentation and the alpha generation network for alpha matte prediction. While the segmentation network takes an input image and produces a coarse segmentation map, the alpha generation network utilizes the same input image as well as a coarse segmentation map that is produced by the segmentation network to predict the alpha matte. Besides, we present a segmentation encoding block to downsample the coarse segmentation map and provide feature representation to the residual block. Furthermore, we propose border loss to penalize only the borders of the subject separately which is more likely to be challenging and we also adapt perceptual loss for portrait matting. To train the proposed system, we combine two different popular training datasets to improve the amount of data as well as diversity to address domain shift problems in the inference time. We tested our model on three different benchmark datasets, namely Adobe Image Matting dataset, Portrait Matting dataset, and Distinctions dataset. The proposed method outperformed the MODNet method that also takes a single input.

Abstract (translated)



3D Action Action_Localization Action_Recognition Activity Adversarial Attention Autonomous Bert Boundary_Detection Caption Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Drone Dynamic_Memory_Network Edge_Detection Embedding Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot