Paper Reading AI Learner

Fine-grained Apparel Classification and Retrieval without rich annotations

2018-11-06 14:55:33
Aniket Bhatnagar, Sanchit Aggarwal

Abstract

The ability to correctly classify and retrieve apparel images has a variety of applications important to e-commerce, online advertising and internet search. In this work, we propose a robust framework for fine-grained apparel classification, in-shop and cross-domain retrieval which eliminates the requirement of rich annotations like bounding boxes and human-joints or clothing landmarks, and training of bounding box/ key-landmark detector for the same. Factors such as subtle appearance differences, variations in human poses, different shooting angles, apparel deformations, and self-occlusion add to the challenges in classification and retrieval of apparel items. Cross-domain retrieval is even harder due to the presence of large variation between online shopping images, usually taken in ideal lighting, pose, positive angle and clean background as compared with street photos captured by users in complicated conditions with poor lighting and cluttered scenes. Our framework uses compact bilinear CNN with tensor sketch algorithm to generate embeddings that capture local pairwise feature interactions in a translationally invariant manner. For apparel classification, we pass the feature embeddings through a softmax classifier, while, the in-shop and cross-domain retrieval pipelines use a triplet-loss based optimization approach, such that squared Euclidean distance between embeddings measures the dissimilarity between the images. Unlike previous works that relied on bounding box, key clothing landmarks or human joint detectors to assist the final deep classifier, proposed framework can be trained directly on the provided category labels or generated triplets for triplet loss optimization. Lastly, Experimental results on the DeepFashion fine-grained categorization, and in-shop and consumer-to-shop retrieval datasets provide a comparative analysis with previous work performed in the domain.

Abstract (translated)

URL

https://arxiv.org/abs/1811.02385

PDF

https://arxiv.org/pdf/1811.02385.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot