Paper Reading AI Learner

Segmentation and ABCD rule extraction for skin tumors classification

2021-06-08 14:07:59
Mahammed Messadi, Hocine Cherifi (Le2i), Abdelhafid Bessaid

Abstract

During the last years, computer vision-based diagnosis systems have been widely used in several hospitals and dermatology clinics, aiming at the early detection of malignant melanoma tumor, which is among the most frequent types of skin cancer. In this work, we present an automated diagnosis system based on the ABCD rule used in clinical diagnosis in order to discriminate benign from malignant skin lesions. First, to reduce the influence of small structures, a preprocessing step based on morphological and fast marching schemes is used. In the second step, an unsupervised approach for lesion segmentation is proposed. Iterative thresholding is applied to initialize level set automatically. As the detection of an automated border is an important step for the correctness of subsequent phases in the computerized melanoma recognition systems, we compare its accuracy with growcut and mean shift algorithms, and discuss how these results may influence in the following steps: the feature extraction and the final lesion classification. Relying on visual diagnosis four features: Asymmetry (A), Border (B), Color (C) and Diversity (D) are computed and used to construct a classification module based on artificial neural network for the recognition of malignant melanoma. This framework has been tested on a dermoscopic database [16] of 320 images. The classification results show an increasing true detection rate and a decreasing false positive rate.

Abstract (translated)

URL

https://arxiv.org/abs/2106.04372

PDF

https://arxiv.org/pdf/2106.04372.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot