Paper Reading AI Learner

More than meets the eye: Self-supervised depth reconstruction from brain activity

2021-06-09 14:46:09
Guy Gaziv, Michal Irani

Abstract

In the past few years, significant advancements were made in reconstruction of observed natural images from fMRI brain recordings using deep-learning tools. Here, for the first time, we show that dense 3D depth maps of observed 2D natural images can also be recovered directly from fMRI brain recordings. We use an off-the-shelf method to estimate the unknown depth maps of natural images. This is applied to both: (i) the small number of images presented to subjects in an fMRI scanner (images for which we have fMRI recordings - referred to as "paired" data), and (ii) a very large number of natural images with no fMRI recordings ("unpaired data"). The estimated depth maps are then used as an auxiliary reconstruction criterion to train for depth reconstruction directly from fMRI. We propose two main approaches: Depth-only recovery and joint image-depth RGBD recovery. Because the number of available "paired" training data (images with fMRI) is small, we enrich the training data via self-supervised cycle-consistent training on many "unpaired" data (natural images & depth maps without fMRI). This is achieved using our newly defined and trained Depth-based Perceptual Similarity metric as a reconstruction criterion. We show that predicting the depth map directly from fMRI outperforms its indirect sequential recovery from the reconstructed images. We further show that activations from early cortical visual areas dominate our depth reconstruction results, and propose means to characterize fMRI voxels by their degree of depth-information tuning. This work adds an important layer of decoded information, extending the current envelope of visual brain decoding capabilities.

Abstract (translated)

URL

https://arxiv.org/abs/2106.05113

PDF

https://arxiv.org/pdf/2106.05113.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot