Paper Reading AI Learner

NDPNet: A novel non-linear data projection network for few-shot fine-gained image classification

2021-06-13 13:33:09
Weichuan Zhangy, Xuefang Liuy, Zhe Xue, Yongsheng Gao, Changming Sun

Abstract

Metric-based few-shot fine-grained image classification (FSFGIC) aims to learn a transferable feature embedding network by estimating the similarities between query images and support classes from very few examples. In this work, we propose, for the first time, to introduce the non-linear data projection concept into the design of FSFGIC architecture in order to address the limited sample problem in few-shot learning and at the same time to increase the discriminability of the model for fine-grained image classification. Specifically, we first design a feature re-abstraction embedding network that has the ability to not only obtain the required semantic features for effective metric learning but also re-enhance such features with finer details from input images. Then the descriptors of the query images and the support classes are projected into different non-linear spaces in our proposed similarity metric learning network to learn discriminative projection factors. This design can effectively operate in the challenging and restricted condition of a FSFGIC task for making the distance between the samples within the same class smaller and the distance between samples from different classes larger and for reducing the coupling relationship between samples from different categories. Furthermore, a novel similarity measure based on the proposed non-linear data project is presented for evaluating the relationships of feature information between a query image and a support set. It is worth to note that our proposed architecture can be easily embedded into any episodic training mechanisms for end-to-end training from scratch. Extensive experiments on FSFGIC tasks demonstrate the superiority of the proposed methods over the state-of-the-art benchmarks.

Abstract (translated)

URL

https://arxiv.org/abs/2106.06988

PDF

https://arxiv.org/pdf/2106.06988.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot