Paper Reading AI Learner

Experimental Analysis of Trajectory Control Using Computer Vision and Artificial Intelligence for Autonomous Vehicles

2021-06-13 14:23:18
Ammar N. Abbas, Muhammad Asad Irshad, Hossam Hassan Ammar

Abstract

Perception of the lane boundaries is crucial for the tasks related to autonomous trajectory control. In this paper, several methodologies for lane detection are discussed with an experimental illustration: Hough transformation, Blob analysis, and Bird's eye view. Following the abstraction of lane marks from the boundary, the next approach is applying a control law based on the perception to control steering and speed control. In the following, a comparative analysis is made between an open-loop response, PID control, and a neural network control law through graphical statistics. To get the perception of the surrounding a wireless streaming camera connected to Raspberry Pi is used. After pre-processing the signal received by the camera the output is sent back to the Raspberry Pi that processes the input and communicates the control to the motors through Arduino via serial communication.

Abstract (translated)

URL

https://arxiv.org/abs/2106.07003

PDF

https://arxiv.org/pdf/2106.07003.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot