Paper Reading AI Learner

On the Power of Multitask Representation Learning in Linear MDP

2021-06-15 11:21:06
Rui Lu, Gao Huang, Simon S. Du

Abstract

While multitask representation learning has become a popular approach in reinforcement learning (RL), theoretical understanding of why and when it works remains limited. This paper presents analyses for the statistical benefit of multitask representation learning in linear Markov Decision Process (MDP) under a generative model. In this paper, we consider an agent to learn a representation function $\phi$ out of a function class $\Phi$ from $T$ source tasks with $N$ data per task, and then use the learned $\hat{\phi}$ to reduce the required number of sample for a new task. We first discover a \emph{Least-Activated-Feature-Abundance} (LAFA) criterion, denoted as $\kappa$, with which we prove that a straightforward least-square algorithm learns a policy which is $\tilde{O}(H^2\sqrt{\frac{\mathcal{C}(\Phi)^2 \kappa d}{NT}+\frac{\kappa d}{n}})$ sub-optimal. Here $H$ is the planning horizon, $\mathcal{C}(\Phi)$ is $\Phi$'s complexity measure, $d$ is the dimension of the representation (usually $d\ll \mathcal{C}(\Phi)$) and $n$ is the number of samples for the new task. Thus the required $n$ is $O(\kappa d H^4)$ for the sub-optimality to be close to zero, which is much smaller than $O(\mathcal{C}(\Phi)^2\kappa d H^4)$ in the setting without multitask representation learning, whose sub-optimality gap is $\tilde{O}(H^2\sqrt{\frac{\kappa \mathcal{C}(\Phi)^2d}{n}})$. This theoretically explains the power of multitask representation learning in reducing sample complexity. Further, we note that to ensure high sample efficiency, the LAFA criterion $\kappa$ should be small. In fact, $\kappa$ varies widely in magnitude depending on the different sampling distribution for new task. This indicates adaptive sampling technique is important to make $\kappa$ solely depend on $d$. Finally, we provide empirical results of a noisy grid-world environment to corroborate our theoretical findings.

Abstract (translated)

URL

https://arxiv.org/abs/2106.08053

PDF

https://arxiv.org/pdf/2106.08053.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot