Paper Reading AI Learner

Generating Contrastive Explanations for Inductive Logic Programming Based on a Near Miss Approach

2021-06-15 11:42:05
Johannes Rabold, Michael Siebers, Ute Schmid

Abstract

In recent research, human-understandable explanations of machine learning models have received a lot of attention. Often explanations are given in form of model simplifications or visualizations. However, as shown in cognitive science as well as in early AI research, concept understanding can also be improved by the alignment of a given instance for a concept with a similar counterexample. Contrasting a given instance with a structurally similar example which does not belong to the concept highlights what characteristics are necessary for concept membership. Such near misses have been proposed by Winston (1970) as efficient guidance for learning in relational domains. We introduce an explanation generation algorithm for relational concepts learned with Inductive Logic Programming (\textsc{GeNME}). The algorithm identifies near miss examples from a given set of instances and ranks these examples by their degree of closeness to a specific positive instance. A modified rule which covers the near miss but not the original instance is given as an explanation. We illustrate \textsc{GeNME} with the well known family domain consisting of kinship relations, the visual relational Winston arches domain and a real-world domain dealing with file management. We also present a psychological experiment comparing human preferences of rule-based, example-based, and near miss explanations in the family and the arches domains.

Abstract (translated)

URL

https://arxiv.org/abs/2106.08064

PDF

https://arxiv.org/pdf/2106.08064.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot