Paper Reading AI Learner

Challenges and Considerations with Code-Mixed NLP for Multilingual Societies

2021-06-15 00:53:55
Vivek Srivastava, Mayank Singh

Abstract

Multilingualism refers to the high degree of proficiency in two or more languages in the written and oral communication modes. It often results in language mixing, a.k.a. code-mixing, when a multilingual speaker switches between multiple languages in a single utterance of a text or speech. This paper discusses the current state of the NLP research, limitations, and foreseeable pitfalls in addressing five real-world applications for social good crisis management, healthcare, political campaigning, fake news, and hate speech for multilingual societies. We also propose futuristic datasets, models, and tools that can significantly advance the current research in multilingual NLP applications for the societal good. As a representative example, we consider English-Hindi code-mixing but draw similar inferences for other language pairs

Abstract (translated)

URL

https://arxiv.org/abs/2106.07823

PDF

https://arxiv.org/pdf/2106.07823.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot