Paper Reading AI Learner

Temporal Convolution Networks with Positional Encoding for Evoked Expression Estimation

2021-06-16 07:49:36
VanThong Huynh, Guee-Sang Lee, Hyung-Jeong Yang, Soo-Huyng Kim

Abstract

This paper presents an approach for Evoked Expressions from Videos (EEV) challenge, which aims to predict evoked facial expressions from video. We take advantage of pre-trained models on large-scale datasets in computer vision and audio signals to extract the deep representation of timestamps in the video. A temporal convolution network, rather than an RNN like architecture, is used to explore temporal relationships due to its advantage in memory consumption and parallelism. Furthermore, to address the missing annotations of some timestamps, positional encoding is employed to ensure continuity of input data when discarding these timestamps during training. We achieved state-of-the-art results on the EEV challenge with a Pearson correlation coefficient of 0.05477, the first ranked performance in the EEV 2021 challenge.

Abstract (translated)

URL

https://arxiv.org/abs/2106.08596

PDF

https://arxiv.org/pdf/2106.08596.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot