Paper Reading AI Learner

Disentangling Semantic-to-visual Confusion for Zero-shot Learning

2021-06-16 08:04:11
Zihan Ye, Fuyuan Hu, Fan Lyu, Linyan Li, Kaizhu Huang

Abstract

Using generative models to synthesize visual features from semantic distribution is one of the most popular solutions to ZSL image classification in recent years. The triplet loss (TL) is popularly used to generate realistic visual distributions from semantics by automatically searching discriminative representations. However, the traditional TL cannot search reliable unseen disentangled representations due to the unavailability of unseen classes in ZSL. To alleviate this drawback, we propose in this work a multi-modal triplet loss (MMTL) which utilizes multimodal information to search a disentangled representation space. As such, all classes can interplay which can benefit learning disentangled class representations in the searched space. Furthermore, we develop a novel model called Disentangling Class Representation Generative Adversarial Network (DCR-GAN) focusing on exploiting the disentangled representations in training, feature synthesis, and final recognition stages. Benefiting from the disentangled representations, DCR-GAN could fit a more realistic distribution over both seen and unseen features. Extensive experiments show that our proposed model can lead to superior performance to the state-of-the-arts on four benchmark datasets. Our code is available at this https URL.

Abstract (translated)

URL

https://arxiv.org/abs/2106.08605

PDF

https://arxiv.org/pdf/2106.08605


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Attention Autonomous Bert Boundary_Detection Caption Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Drone Dynamic_Memory_Network Edge_Detection Embedding Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot