Paper Reading AI Learner

CoANE: Modeling Context Co-occurrence for Attributed Network Embedding

2021-06-17 04:31:02
I-Chung Hsieh, Cheng-Te Li

Abstract

Attributed network embedding (ANE) is to learn low-dimensional vectors so that not only the network structure but also node attributes can be preserved in the embedding space. Existing ANE models do not consider the specific combination between graph structure and attributes. While each node has its structural characteristics, such as highly-interconnected neighbors along with their certain patterns of attribute distribution, each node's neighborhood should be not only depicted by multi-hop nodes, but consider certain clusters or social circles. To model such information, in this paper, we propose a novel ANE model, Context Co-occurrence-aware Attributed Network Embedding (CoANE). The basic idea of CoANE is to model the context attributes that each node's involved diverse patterns, and apply the convolutional mechanism to encode positional information by treating each attribute as a channel. The learning of context co-occurrence can capture the latent social circles of each node. To better encode structural and semantic knowledge of nodes, we devise a three-way objective function, consisting of positive graph likelihood, contextual negative sampling, and attribute reconstruction. We conduct experiments on five real datasets in the tasks of link prediction, node label classification, and node clustering. The results exhibit that CoANE can significantly outperform state-of-the-art ANE models.

Abstract (translated)

URL

https://arxiv.org/abs/2106.09241

PDF

https://arxiv.org/pdf/2106.09241.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot