Paper Reading AI Learner

using multiple losses for accurate facial age estimation

2021-06-17 11:18:16
Yi Zhou, Heikki Huttunen, Tapio Elomaa

Abstract

Age estimation is an essential challenge in computer vision. With the advances of convolutional neural networks, the performance of age estimation has been dramatically improved. Existing approaches usually treat age estimation as a classification problem. However, the age labels are ambiguous, thus make the classification task difficult. In this paper, we propose a simple yet effective approach for age estimation, which improves the performance compared to classification-based methods. The method combines four classification losses and one regression loss representing different class granularities together, and we name it as Age-Granularity-Net. We validate the Age-Granularity-Net framework on the CVPR Chalearn 2016 dataset, and extensive experiments show that the proposed approach can reduce the prediction error compared to any individual loss. The source code link is this https URL.

Abstract (translated)

URL

https://arxiv.org/abs/2106.09393

PDF

https://arxiv.org/pdf/2106.09393.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot