Paper Reading AI Learner

Classifying vaccine sentiment tweets by modelling domain-specific representation and commonsense knowledge into context-aware attentive GRU

2021-06-17 15:16:08
Usman Naseem, Matloob Khushi, Jinman Kim, Adam G. Dunn

Abstract

Vaccines are an important public health measure, but vaccine hesitancy and refusal can create clusters of low vaccine coverage and reduce the effectiveness of vaccination programs. Social media provides an opportunity to estimate emerging risks to vaccine acceptance by including geographical location and detailing vaccine-related concerns. Methods for classifying social media posts, such as vaccine-related tweets, use language models (LMs) trained on general domain text. However, challenges to measuring vaccine sentiment at scale arise from the absence of tonal stress and gestural cues and may not always have additional information about the user, e.g., past tweets or social connections. Another challenge in LMs is the lack of commonsense knowledge that are apparent in users metadata, i.e., emoticons, positive and negative words etc. In this study, to classify vaccine sentiment tweets with limited information, we present a novel end-to-end framework consisting of interconnected components that use domain-specific LM trained on vaccine-related tweets and models commonsense knowledge into a bidirectional gated recurrent network (CK-BiGRU) with context-aware attention. We further leverage syntactical, user metadata and sentiment information to capture the sentiment of a tweet. We experimented using two popular vaccine-related Twitter datasets and demonstrate that our proposed approach outperforms state-of-the-art models in identifying pro-vaccine, anti-vaccine and neutral tweets.

Abstract (translated)

URL

https://arxiv.org/abs/2106.09589

PDF

https://arxiv.org/pdf/2106.09589.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot