Paper Reading AI Learner

On the Connections between Counterfactual Explanations and Adversarial Examples

2021-06-18 08:22:24
Martin Pawelczyk, Shalmali Joshi, Chirag Agarwal, Sohini Upadhyay, Himabindu Lakkaraju

Abstract

Counterfactual explanations and adversarial examples have emerged as critical research areas for addressing the explainability and robustness goals of machine learning (ML). While counterfactual explanations were developed with the goal of providing recourse to individuals adversely impacted by algorithmic decisions, adversarial examples were designed to expose the vulnerabilities of ML models. While prior research has hinted at the commonalities between these frameworks, there has been little to no work on systematically exploring the connections between the literature on counterfactual explanations and adversarial examples. In this work, we make one of the first attempts at formalizing the connections between counterfactual explanations and adversarial examples. More specifically, we theoretically analyze salient counterfactual explanation and adversarial example generation methods, and highlight the conditions under which they behave similarly. Our analysis demonstrates that several popular counterfactual explanation and adversarial example generation methods such as the ones proposed by Wachter et. al. and Carlini and Wagner (with mean squared error loss), and C-CHVAE and natural adversarial examples by Zhao et. al. are equivalent. We also bound the distance between counterfactual explanations and adversarial examples generated by Wachter et. al. and DeepFool methods for linear models. Finally, we empirically validate our theoretical findings using extensive experimentation with synthetic and real world datasets.

Abstract (translated)

URL

https://arxiv.org/abs/2106.09992

PDF

https://arxiv.org/pdf/2106.09992.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot