Paper Reading AI Learner

Classical Planning as QBF without Grounding

2021-06-18 14:06:57
Irfansha Shaik, Jaco van de Pol

Abstract

Most classical planners use grounding as a preprocessing step, reducing planning to propositional logic. However, grounding comes with a severe cost in memory, resulting in large encodings for SAT/QBF based planners. Despite the optimisations in SAT/QBF encodings such as action splitting, compact encodings and using parallel plans, the memory usage due to grounding remains a bottleneck when actions have many parameters, such as in the Organic Synthesis problems from the IPC 2018 planning competition (in its original non-split form). In this paper, we provide a compact QBF encoding that is logarithmic in the number of objects and avoids grounding completely by using universal quantification for object combinations. We compare the ungrounded QBF encoding with the simple SAT encoding and also show that we can solve some of the Organic Synthesis problems, which could not be handled before by any SAT/QBF based planners due to grounding.

Abstract (translated)

URL

https://arxiv.org/abs/2106.10138

PDF

https://arxiv.org/pdf/2106.10138.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot