Paper Reading AI Learner

Training or Architecture? How to Incorporate Invariance in Neural Networks

2021-06-18 10:31:00
Kanchana Vaishnavi Gandikota, Jonas Geiping, Zorah Lähner, Adam Czapliński, Michael Moeller

Abstract

Many applications require the robustness, or ideally the invariance, of a neural network to certain transformations of input data. Most commonly, this requirement is addressed by either augmenting the training data, using adversarial training, or defining network architectures that include the desired invariance automatically. Unfortunately, the latter often relies on the ability to enlist all possible transformations, which make such approaches largely infeasible for infinite sets of transformations, such as arbitrary rotations or scaling. In this work, we propose a method for provably invariant network architectures with respect to group actions by choosing one element from a (possibly continuous) orbit based on a fixed criterion. In a nutshell, we intend to 'undo' any possible transformation before feeding the data into the actual network. We analyze properties of such approaches, extend them to equivariant networks, and demonstrate their advantages in terms of robustness as well as computational efficiency in several numerical examples. In particular, we investigate the robustness with respect to rotations of images (which can possibly hold up to discretization artifacts only) as well as the provable rotational and scaling invariance of 3D point cloud classification.

Abstract (translated)

URL

https://arxiv.org/abs/2106.10044

PDF

https://arxiv.org/pdf/2106.10044.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot